

Original Research Article

COMPARISON OF MEAN PLATELET DISTRIBUTION WIDTH(PDW) IN RELATION TO THROMBOCYTOPENIA IN PATIENTS WITH DENGUE FEVER

Arakatla Lohith Reddy¹, Mohammed Abdul Saleem², Srikanth Sandanala³, K S L Sowmya⁴

¹Assistant Professor, Department of Pediatrics, Mahavir Institute of Medical Sciences, Vikarabad, Telangana, India.
 ²Associate Professor, Department of Pediatrics, Gandhi Medical College, Secunderabad, Telangana, India.
 ³Associate Professor of Pediatrics, Niloufer Hospital, Osmania Medical College, Hyderabad, Telangana, India.
 ⁴Assistant Professor, Department of Pediatrics, Mahavir Institute of Medical Sciences, Vikarabad, Telangana, India.

 Received
 : 05/05/2024

 Received in revised form : 25/06/2024

 Accepted
 : 09/07/2024

Corresponding Author:

Dr. Mohammed Abdul Saleem, Associate Professor, Department of Pediatrics, Gandhi Medical College, Secunderabad, Telangana, India. Email: drmohammedsaleem@gmail.com

DOI: 10.5530/ijmedph.2024.3.4

Source of Support: Nil, Conflict of Interest: None declared

Int J Med Pub Health 2024; 14 (3); 16-26

ABSTRACT

Background: Dengue fever is a prevalent mosquito-borne viral illness with potential complications, including thrombocytopenia. **Objective:** This study aimed to investigate the relationship between platelet indices and the presence of thrombocytopenia in individuals diagnosed with dengue fever.

Materials and Methods: A total of 100 dengue-confirmed cases were enrolled, and their platelet count, platelet distribution width (PDW), and plateletcrit (PCT) were measured during the acute phase of the disease.

Results: The findings of this study revealed a substantial incidence of thrombocytopenia among the participants, aligning with the well-established association between dengue infection and platelet reduction. Notably, a modest but significant correlation was demonstrated between PDW and PCT and the severity of thrombocytopenia. Subgroup analysis based on dengue virus serotypes unveiled varying patterns of platelet indices, hinting at potential differences in disease pathogenesis.

Conclusion: The results of this study underscore the potential utility of platelet indices as informative markers for assessing the degree of thrombocytopenia in dengue fever cases. The observed correlations between platelet count, PDW, and PCT provide insights into the complex interplay between platelet dynamics and dengue infection. Further prospective investigations are warranted to elucidate the underlying mechanisms driving these correlations, which could contribute to enhanced understanding, diagnosis, and management of dengue-associated thrombocytopenia.

Keywords: Mean Platelet Volume (MPV), Platelet Distribution Width (PDW), Plateletcrit (PCT) and Platelet Large Cell Ration (P-LCR).

INTRODUCTION

Dengue fever, caused by the dengue virus and transmitted primarily by Aedes mosquitoes, remains a significant global public health concern, particularly in tropical and subtropical regions.^[11] Characterized by a spectrum of clinical manifestations ranging from asymptomatic infection to severe dengue, this viral illness affects millions of individuals annually. One of the hallmark complications associated with dengue fever is thrombocytopenia, a reduction in platelet count that can potentially lead to bleeding complications and other adverse outcomes.^[2]

Platelets, the smallest blood cells, play a crucial role in hemostasis and wound healing.^[3,4] In dengue fever, however, platelet destruction and dysfunction are commonly observed, contributing to the development of thrombocytopenia. As a result, investigating platelet-related parameters and their associations with thrombocytopenia in dengueinfected patients holds promise for elucidating the pathophysiological mechanisms underlying this complication.

In recent years, platelet indices such as mean platelet volume (MPV), platelet distribution width (PDW), and plateletcrit (PCT) have gained attention as potential indicators of platelet function and health. MPV reflects the average size of circulating platelets, PDW indicates the variation in platelet size, and PCT represents the proportion of blood volume occupied by platelets.^[5,6,7] These indices have been studied in various medical conditions to uncover potential insights into platelet dynamics and their roles in different disease processes.

This study aims to bridge the existing knowledge gap by investigating the relationship between platelet indices and thrombocytopenia in patients diagnosed with dengue fever. By analyzing the correlations between platelet count, PDW, and PCT in the context of thrombocytopenia severity, we seek to provide a better understanding of the intricate interplay between platelet physiology and dengue virus-induced thrombocytopenia. Furthermore, exploring potential variations in platelet indices based on different dengue virus serotypes could shed light on the role of viral factors in modulating platelet responses.

The outcomes of this study have the potential to contribute valuable insights to clinical practice. Understanding the associations between platelet indices and thrombocytopenia severity could aid in risk stratification, early detection of severe cases, and more effective management of dengue fever.^[8] Moreover, unraveling the relationship between platelet dynamics and specific dengue virus serotypes could lead to tailored therapeutic strategies and enhance our overall comprehension of dengue pathogenesis.

MATERIAL AND METHODS

Source of data

The present study was conducted in Department of Paediatrics, Gandhi Hospital, tertiary care hospital attached to Gandhi Medical College, Secunderabad. There has been an increasing incidence of Dengue fever in this part in the recent years. Bleeding manifestations are most common to occur in dengue fever. Dengue fever is known to involve multiple systems resulting in multi organ dysfunction. Hence our study was conducted to correlate the platelet parameters and severity of illness in Dengue illness. **Collection of data**

Study design: A hospital based prospective observational study conducted in patients admitted

Gandhi hospital, secunderabad **Sample Size:** A total of 100 children less than 14 years fulfilling the inclusion criteria will be included in the study from January 2019 to April 2021 after taking written and informed consent.

Duration of the study: This study was conducted prospectively for a period from January 2019 to April 2021.

Inclusion Criteria

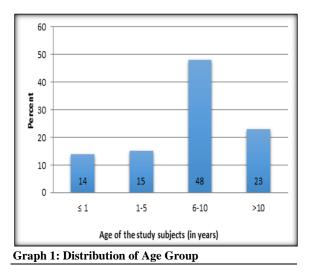
- 1. Children less than 14 years of both genders will be considered for the study.
- 2. NS1 and/or IgM and/or IgG positive dengue cases established by immunochromatographic

strip tests [sensitivity 95.6%, specificity 96 %]. and serology.

Exclusion Criteria

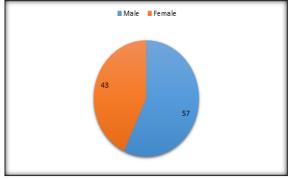
- 1. Age more than 14yrs
- 2. Patients who are serologically negative for dengue infection.

Investigations

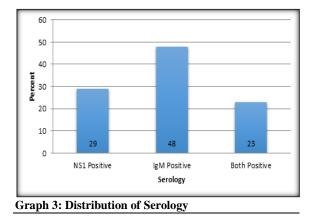

- 1. Complete Blood Picture with platelet indices [PDW, Platelatocrit]
- 2. Dengue Serology [NS1 Antigen and/or IgM and/or IgG antibodies]

Methodology

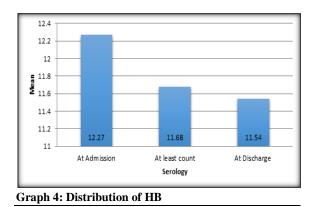
- The platelet parameters were measured by the Sysmex XN 1000 semi-automated hematology analyzer on venous samples collected in EDTA from 100 patients as a clinical sample.
- The specimens were analysed within 1 hour from venesection. Observations were considered valid only if the specimens were analysed within 1 hour from venesection, to avoid the problems occurring when EDTA collected samples are analysed.
- The parameters analysed included complete blood count, PLT, PDW, PCT.


RESULTS

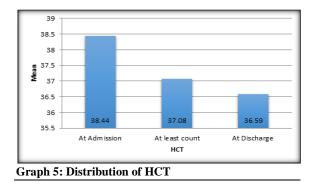
This is a prospective study conducted in Gandhi Medical College, Hyderabad, Telangana, India. The total number of confirmed dengue cases were 100. The study compares parameters on three days at the time of admission, on the day of least platelet count and the time of discharge. The study population included 100 subjects.

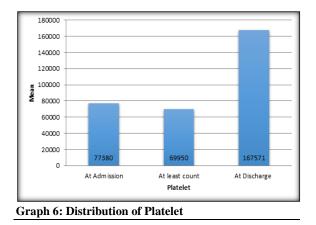

The Mean age was 7.45 ± 3.7 years.

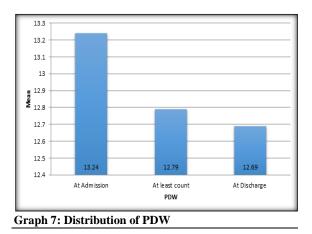
The young age in the group was 10months and eldest was 12 years. [Table 2]

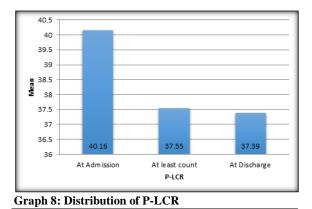


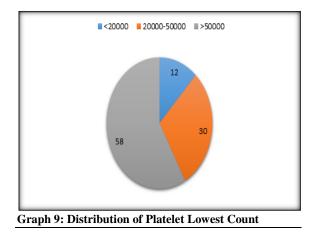
Graph 2: Distribution of Gender

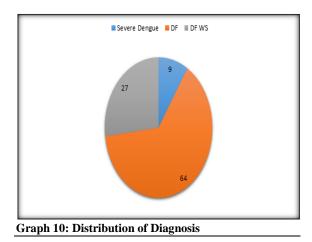

Out of 100 cases 57 were male ,43 were female. M: F ratio is 1.32


Out of 100 cases 29% were NS1 positive, 48% were IgM positive and 23% were both NS1 IgM positive.

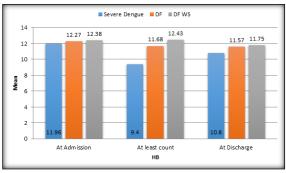

For all 100 cases the mean HB was 12.27 + 1.97 at admission, 11.68 + 2.08 on the day of least platelet count, 11.54 + 1.46 at discharge.


Of subjects at admission HCT was 38.44 ± 5.60 , on the day of least count was 37.08 ± 5.84 , at discharge 36.59 ± 4.51 .

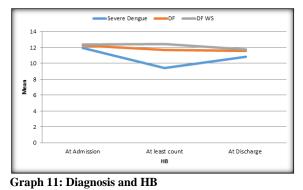

Platelets mean was 77380 ± 63975 at the time of admission, on the day of least count was 69950 ± 61029 , at discharge 167571 ± 83393 .


PDW was 13.24 ± 0.91 at the time of admission, 12.79 ± 0.75 on the day of least platelet count, 12.69 ± 0.72 at the time of discharge of all cases.

PDW was 13.24 ± 0.91 at the time of admission, 12.79 ± 0.75 on the day of least platelet count, 12.69 ± 0.72 at the time of discharge of all cases.



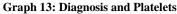
Of all dengues cases, on the day of lowest platelet count 58 subjects have mild thrombocytopenia (>50000 per microlitre) 30 subjects have moderate thrombocytopenia (20000-50000 per microlitre), 12 had severe thrombocytopenia (<20000 per microlitre) in range of counts with spontaneous bleeding.

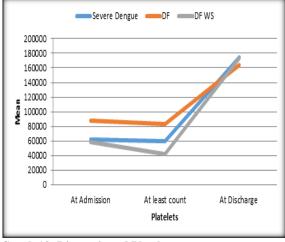


Study subjects were divided into three groups; Dengue fever (64 subjects); Dengue fever with warning signs (27 subjects) like capillary leak, bleeding manifestations; and severe dengue (9 subjects) with multiorgan involvement like encephalitis, hepatitis, DIC, renal failure.

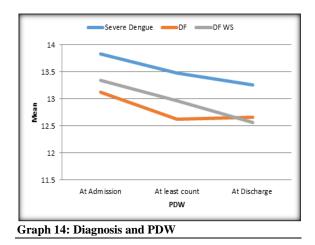
Of all dengue fever cases the mean hemoglobin was 12.27 ± 1.76 at the time of admission, 11.68 ± 1.47 on the day of least platelet count, 11.57 ± 1.37 at discharge. Of all dengue fever with warning signs mean Hb was 12.38 ± 1.4 on admission, 12.43 ± 2.11 on the day of least platelet count, 11.75 ± 1.11 on discharge. Of 9 severe dengue cases the mean Hb was 11.96 ± 3.83 on admission , 10.80 ± 2.56 at the time of discharge, 9.40 ± 3.78 on the day least platelet count (P Value 0.001 which is significant) suggesting blood loss occurs in severe dengue. [Table 11]

Graph 11: Diagnosis and HB

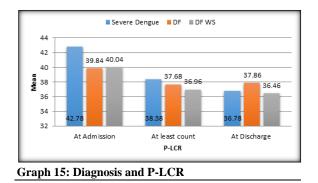


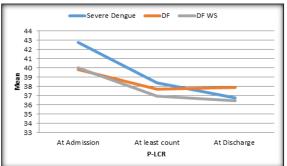

Of all subjects low hematocrit was significant (P Value – 0.005) in severe dengue cases on the day of least platelet count i.e 32.91 ± 11.24 , suggesting low HCT may be due to bleeding.

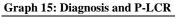
Graph 12: Diagnosis and HCT

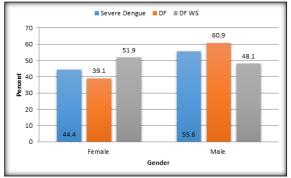


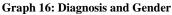
Graph 13: Diagnosis and Platelets


Of all cases there is significant decrease in platelet count in severe dengue subjects (P Value 0.009).

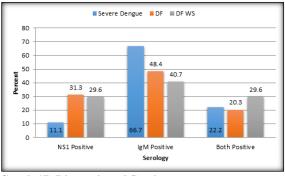


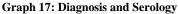


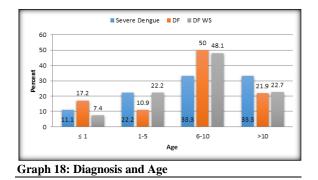

On statisticial analysis of Platelet Distribution Width (PDW) of all cases, there was significant association on the day of least platelet count and on the day of discharge in all cases irrespective of diagnosis.



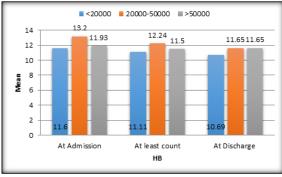
On statisticial data and anylsis of platelet large cell ratio (P- LCR) there was significant association only on the day of discharge (P Value < 0.05).

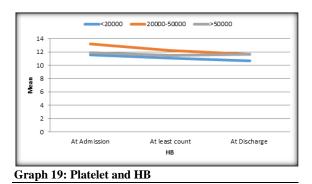


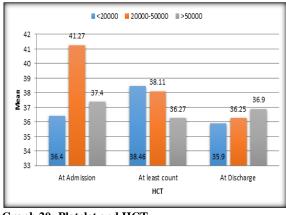


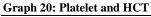


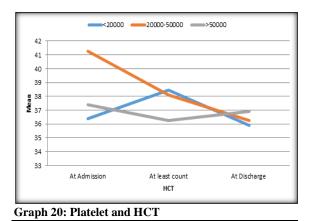
There was no significant association between severity of dengue (diagnosis) and gender affecting both genders equally

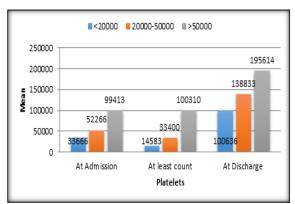


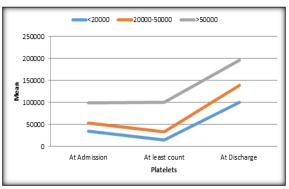

There was no significant association (P Value -0.595) between diagnosis and serology.

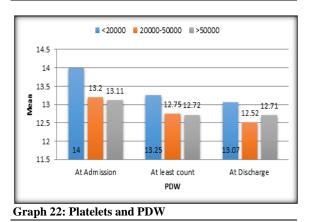

There was no significant association between diagnosis and age suggesting that dengue affecting all age groups less than 14 years equally.

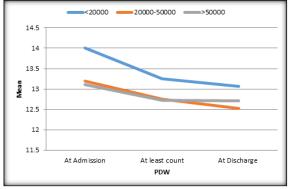



Graph 19: Platelet and HB

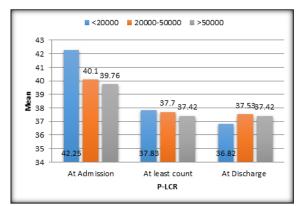

Of all cases there was significant association between platelet count and hemoglobin at admission (P Value - 0.007). and not significant on day of least platelet count and at discharge.

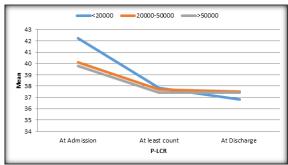



Of all cases there was significant association between platelet count and hematocrit (HCT) only on the day of admission (P Value -0.003).



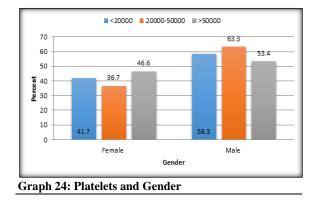
Graph 21: Platelet and Platelets Count


Graph 21: Platelet and Platelets Count

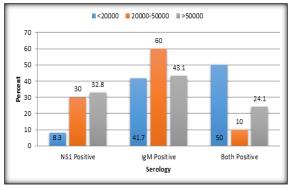


Graph 22: Platelets and PDW

There was a significant association between platelet count and Platelet distribution width (PDW) at admission P Value 0.007. Highest PDW (14 ± 0.80) was present at admission in subjects group having count less than 20000 per microlitre.

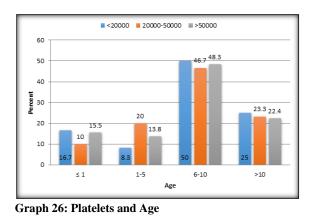


Graph 23: Platelets and P-LCR



Graph 23: Platelets and P-LCR

In all cases there is no significant association between platelet count and platelet large cell ration (P-LCR).



There is no association between platelet count and gender of the subjects.

Graph 25: Platelets and Serology

There is no significant association between platelet count and serology in the subjects.

There is no significant association between platelet count and age of the subjects.

Table 1: Distribution of Study Subjects according to their Age Group (N = 100)				
Age (in Years)	No.	Percent		
≤ 1	14	14.0		
1-5	15	15.0		
6-10	48	48.0		
>10	23	23.0		
Mean (SD)	7.45 (3.76)			
Range	0.4	-14.0		

Table 2: Distribution of Study Subjects according to the Gender (N=100)				
Gender No. Percent				
Male	57	57.0		
Female	43	43.0		

Table 3: Distribution of Study Subjects according to the Serology (N=100)			
Serology	No.	Percent	
NS1 Positive	29	29.0	
IgM Positive	48	48.0	
Both Positive	23	23.0	

Table 4: Distribution of Study Subjects according to the HB (N=100)			
HB	Mean (SD)	Range	
At Admission	12.27 (1.97)	6.7-18.0	
At least count	11.68 (2.08)	4.0-16.7	
At Discharge	11.54 (1.46)	6.7-14.0	

Table 5: Distribution of Study Subjects according to the HCT (N=100)				
HCT Mean (SD) Range				
At Admission	38.44 (5.60)	22.90-51.70		
At least count	37.08 (5.84)	12.20-51.00		
At Discharge	36.59 (4.51)	22.40-62.00		

Table 6: Distribution of Study Subjects according to the Platelet (N=100)				
Platelet Mean (SD) Range				
At Admission	77380 (63975)	8000-456000		
At least count	69950 (61029)	7000-343000		
At Discharge	167571 (83393)	2200-471000		

Table 7: Distribution of Study Subjects according to the PDW (N=100)				
PDW Mean (SD) Range				
At Admission	13.24 (0.91)	11.4-16.0		
At least count	12.79 (0.75)	11.4-14.9		
At Discharge	12.69 (0.72)	11.1-14.2		

Table 8: Distribution of Study Subjects according to the P-LCR (N=100)			
P-LCR	Mean (SD)	Range	
At Admission	40.16 (3.86)	30-47	
At least count	37.55 (2.91)	30-45	
At Discharge	37.39 (2.43)	41-43	

Table 9: Distribution of Study Subjects according to the Platelet Lowest Count (N=100)

Platelet	No.	Percent
<20000	12	12.0
20000-50000	30	30.0
>50000	58	58.0

Table 10: Distribution of Study Subjects according to the Diagnosis (N=100)

Diagnosis	No.	Percent
Severe Dengue	9	9.0
DF	64	64.0
DF WS	27	27.0

Table 11: Association between Diagnosis and HB (N=100) P Value DF DF WS HB Severe Dengue At Admission 11.96 (3.83) 12.27 (1.76) 12.38 (1.64) 0.862 11.68 (1.47) 0.001* At least count 9.40 (3.78) 12.43 (2.11) At Discharge 10.80 (2.56) 11.57 (1.37) 11.75 (1.11) 0.235 ANOVA, P Value * Significant

Table 12: Association between Diagnosis and HCT (N=100)

НСТ	Severe Dengue	DF	DF WS	P Value
At Admission	37.13 (9.60)	38.46 (5.31)	38.83 (4.71)	0.736
At least count	32.91 (11.24)	36.58 (3.95)	39.66 (6.31)	0.005*
At Discharge	35.25 (6.14)	36.28 (3.54)	37.81 (5.78)	0.227
ANOVA, P Value * Significant				

Table 13: Association between Diagnosis and Platelets (N=100)

Platelets				
Tatelets	Severe Dengue	DF	DF WS	P Value
At Admission	62111 (36360)	87593 (73574)	58259 (36661)	0.102
At least count	60000 (72284)	83359 (66135)	41481 (25646)	0.009*

At Discharge	174666 (112273)	164317 (74843)	173000 (94773)	0.875
	ANOVA, P Value *	Significant		

Table 14: Association betw	een Diagnosis and PDW (N=100)		
PDW	Severe Dengue	DF	DF WS	P Value
At Admission	13.83 (0.77)	13.12 (0.91)	13.34 (0.91)	0.075
At least count	13.48 (0.53)	12.62 (0.69)	12.97 (0.78)	0.001*
At Discharge	13.26 (0.53)	12.66 (0.66)	12.56 (0.85)	0.036*
ANOVA, P Value * Significant				

Table 15: Association betw	een Diagnosis and P-LCR	(N=100)		
P-LCR	Severe Dengue	DF	DF WS	P Value
At Admission	42.78 (3.11)	39.84 (3.70)	40.04 (4.23)	0.100
At least count	38.38 (3.93)	37.68 (2.44)	36.96 (3.53)	0.375
At Discharge	36.78 (2.53)	37.86 (2.22)	36.46 (2.64)	0.034*
ANOVA, P Value * Significant				

Table 16: Association between Diagnosis and Gender (N=100)					
Gender	Severe Dengue	DF	DF WS		
Female	4 (44.4)	25 (39.1)	14 (51.9)		
Male	5 (55.6)	39 (60.9)	13 (48.1)		
Chi-Square Test, P Value $= 0.528$, Not Significant					

Table 17: Association between D	iagnosis and Serology (N=100)			
Serology	Severe Dengue	DF	DF WS	
NS1 Positive	1 (11.1)	20 (31.3)	8 (29.6)	
IgM Positive	6 (66.7)	31 (48.4)	11 (40.7)	
Both Positive	2 (22.2)	13 (20.3)	8 (29.6)	
Chi-Square Test, P Value = 0.595, Not Significant				

Table 18: Association between Di	agnosis and Age (N=100)		
Age (in Years)	Severe Dengue	DF	DF WS
≤ 1	1 (11.1)	11 (17.2)	2 (7.4)
1-5	2 (22.2)	7 (10.9)	6 (22.2)
6-10	3 (33.3)	32 (50.0)	13 (48.1)
>10	3 (33.3)	14 (21.9)	6 (22.7)
Mean (SD)	8.11 (4.07)	7.30 (3.82)	7.57 (3.62)
	Chi-Square Test, P Value = 0.6	46, Not Significant	

Table 19: Association betwee	n Platelet Count and HB	(N=100)		
HB	<20000	20000-50000	>50000	P Value
At Admission	11.60 (1.95)	13.20 (1.81)	11.93 (1.91)	0.007*
At least count	11.11 (3.41)	12.24 (1.54)	11.50 (1.95)	0.174
At Discharge	10.69 (1.71)	11.65 (1.17)	11.65 (1.51)	0.117
ANOVA, P Value * Significant				

Table 20: Association betwe	een Platelet Count and H	CT (N=100)		
НСТ	<20000	20000-50000	>50000	P Value
At Admission	36.40 (5.43)	41.27 (4.59)	37.40 (5.65)	0.003*
At least count	38.46 (8.66)	38.11 (4.42)	36.27 (5.77)	0.260
At Discharge	35.90 (3.26)	36.25 (3.39)	36.90 (5.21)	0.710
ANOVA, P Value * Significant				

Table 21: Association between Plate	let Count and Platelets (N	=100)		
Platelets	<20000	20000-50000	>50000	P Value
At Admission	33666 (17890)	52266 (33419)	99413 (72460)	< 0.001*
At least count	14583 (4581)	33400 (8668)	100310 (64345)	< 0.001*
At Discharge	1000636 (44163)	138833 (78866)	195614 (79710)	< 0.001*
ANOVA, P Value * Significant				

Table 22: Association betwee	een Platelet Count and P	DW (N=100)		
PDW	<20000	20000-50000	>50000	P Value
At Admission	14.00 (0.80)	13.20 (0.75)	13.11 (0.94)	0.007*
At least count	13.25 (0.95)	12.75 (0.71)	12.72 (0.70)	0.073
At Discharge	13.07 (0.70)	12.52 (0.69)	12.71 (0.72)	0.093
	ANOV	A, P Value * Significant		

24

Table 23: Association betwe	een Platelet Count and P-	LCR (N=100)		
P-LCR	<20000	20000-50000	>50000	P Value
At Admission	42.25 (3.86)	40.10 (3.85)	39.76 (3.79)	0.125
At least count	37.83 (3.40)	37.70 (3.48)	37.42 (2.50)	0.862
At Discharge	36.82 (2.22)	37.53 (2.16)	37.42 (2.61)	0.701
ANOVA, P Value * Significant				

Table 24: Association between Pla	telet Count and Gender (N=10	0)		
Gender	<20000	20000-50000	>50000	
Female	5 (41.7)	11 (36.7)	27 (46.6)	
Male	7 (58.3)	19 (63.3)	31 (53.4)	
Chi-Square Test, P Value $= 0.671$, Not Significant				

 Table 25: Association between Platelet Count and Serology (N=100)

Table 25: Association between Thatelet Count and Scrology (10–100)				
Serology	<20000	20000-50000	>50000	
NS1 Positive	1 (8.3)	9 (30.0)	19 (32.8)	
IgM Positive	5 (41.7)	18 (60.0)	25 (43.1)	
Both Positive	6 (50.0)	3 (10.0)	14 (24.1)	
	Chi-Square Test, P Value $= 0.02$	52, Not Significant		

Table 26: Association between Platelet Count and Age (N=100)

Table 20: Association between Tratefet Count and Age (10–100)				
Age (in Years)	<20000	20000-50000	>50000	
≤ 1	2 (16.7)	3 (10.0)	9 (15.5)	
1-5	1 (8.3)	6 (20.0)	8 (13.8)	
6-10	6 (50.0)	14 (46.7)	28 (48.3)	
>10	3 (25.0)	7 (23.3)	13 (22.4)	
Mean (SD)	7.79 (3.91)	7.77 (3.71)	7.21 (3.80)	
	Chi-Square Test, P Value = 0.96	52, Not Significant		

DISCUSSION

Dengue fever is one of the major public health problems. Defect in DF/DHF are multifactorial mechanisms that include thrombopathy, coagulopathy and vasculopathy. Thrombopathy thrombocytopenia and means the platelet dysfunction. Many factors can contribute to the onset of thrombocytopenia in dengue, varying from a reactive immune response against platelets to production.^[9,10,11,12] decreased platelet The depression in the bone marrow observed in dengue fever in the acute stage may account for thrombocytopenia. In addition, direct infection of megakaryocytes by dengue virus could lead to an increased destruction of platelets.^[13] As the platelets are natural sources of growth factors like platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), insulin-like growth factor 1 (IGF-1) or transforming growth factor β (TGF- β), they have important role in inflammation, angiogenesis, repair and regeneration of the tissues.^[17]

The present study correlates with the previous study in age incidence and the observation that no significant difference in age was noted between dengue with/without shock. The mean age group of presentation of children with dengue infection in the present study was 7.45 ± 3.76 years which is comparable with Chandrakanta et al,^[18] Alam et al,^[19] Ahmed et al.^[20] The study made use of two commercial kits ELISA and Pan Bio ELISA kits which showed high degree sensitivity and specificity in the global testing centres and were highly recommended for the purpose. There was a significant statistical correlation between haematocrit and severity of the disease among the clinical subgroups of dengue. All of the patients presented were analysed for Platelet count, PDW, P-LCR. In our study we found that Platelet count were lower in all dengue fever patients on the day of admission and PDW and P-LCR levels were higher in all dengue fever patients irrespective of severity. We noticed that PDW level was significantly higher in the dengue fever, which reflect that increasing PDW levels may predict dengue fever. We found that in the clinical spectrum of severity of Dengue, From DF group to severe dengue, highly significant association (p value < 0.001) was noted between the various groups as Low platelet count, High PDW, High P-LCR.

CONCLUSION

This prospective observational study was conducted during January 2019 to April 2021. During this study period 100 cases of serologically diagnosed dengue fever were evaluated and analysed for laboratory parameters. Among these 100 cases, 64 were classical dengue fever, 27 were dengue fever with warning signs, 9 were severe dengue cases. Among these patients, 57% were male, 43% were female.48% of cases were in the 6-10-year age group. Mean Hemoglobin in case group is 11.83 gm/dl. Mean Hematocrit in case group is 38.44 %. Statistical analysis showed no association between hemoglobin, hemoconcentration levels with Dengue fever. There was significant association between PDW and dengue fever irrespective of severity (p value < 0.001) on all days (admission day, on the

day of least count and on discharge). However there is no significant association between platelet large cell ratio and dengue fever. There was a significantly higher PDW, P-LCR in severe dengue group as compared to DF group (p<0.001). There was a significant negative correlation with PDW, P-LCR (p – 0.003; r = -0.293). There was significant relation between PDW and platelet count on all days irrespective of severity suggesting PDW can be taken as a prognostic marker for platelet count.

REFERENCES

- WHO/TDR. Dengue guidelines for diagnosis, treatment, prevention and control. New edition. Geneva, World Health Organization, 2009. Avaialble at http://apps.who.int/iris/bitstream/10665/44188/1/978924154 7871_eng.pdf
- Chuang YC, Lin YS, Liu CC, Liu HS, Liao SH, Shi MD, Lei HV, Yeh TM. Factors contributing to the disturbance of coagulation and fibrinolysis in dengue virus infection. J Formos Med Assoc. 2013; 112(1): 12-7.
- Vagdatli E, Gounari E, Lazaridou E, KatsibourliaE, TsikopoulouF, LabrianouI.Platelet distribution width:a simple, practical and specific marker of activation of coagulation.HIPPOKRATIA.2010;14(1):28-32.
- Bowles KM, Cooke LJ, Richards EM, Baglin TP. Platelet size has a diagnostic value in patients with thrombocytopenia. Clin lab Haem. 2005; 27:370-373.
- Wiwanikit V. Mean platelet volume in patients with dengue haemorrhagic fever. Platelets. 2004; 15(3): 185.
- Babu E, Basu D. Platelet Large cell ratio in the differential diagnosis of abnormal platelet counts. Indian J PatholMicrobiol. 2004: 47 (2):202-5.
- Ntaios G, Papadopoulus A, Chatzinikolaou A et al. Increased value of MPV and platelet size deviation width may provide a safe ppositive diagnosis of idiopathic thrombocytopenic purpura. Acta haematologica.2008;119:173-177.
- WHO. Dengue hemorrhagic fever: Diagnosis, Treatment, prevention and control, 2nd ed. Geneva World Helath Organisation, 1997.

- Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al. Dengue: A continuing global threat. NatRevMicrobiol. 2010;8 (12 Suppl):7–16.
- Kaushik A, Pineda C, Kest H. Diagnosis and management of dengue fever in children. Pediatr Rev. 2010 Apr;31(4): e28-35.
- Rueda E, Mendez A, Gonzalez G. Hemophagocytic syndrome associated with dengue hemorrhagic fever. Biomedica. 2002 Jun;22(2):160-6.
- Kabilan L, Balasubramanian S, Keshava SM, Satyanarayana K. The 2001 dengue epidemic in Chennai. Indian J Pediatr. 2005 Nov;72(11):919-23.
- George R, liam CK, Chua CT, Lam SK, Pang T, Geethan R, FOO LS. Unusual clinical manifestations of dengue virus infection. Southeast Asian J Trop Med Public Health. 1998 Dec;19(4):585-90.
- Lum LC, Lam SK, George R, Devi S. Fulminant hepatitis in dengue infection. Southeast Asian J Trop med public Health. 1993 Sep;24(3):467-71.
- Chye JK, lim CT, Ng KB, Lim JM, George R, Lam SK. Vertical transmission of dengue. Clin Infect Dis. 1997 Dec;25(6):1374-7.
- George R, liam CK, Chua CT, Lam SK, Pang T, Geethan R, FOO LS. Unusual clinical manifestations of dengue virus infection. Southeast Asian J Trop Med Public Health. 1998 Dec;19(4):585-90.
- LumLC, Lam SK, Choy YS, George R, Harun F. Dengue encephalitis: a true entity? Am J Trop Med Hyg. 1996 Mar;54(3):256-9.
- Chandrakanta, Rashmi & Kumar, & Kapoor, Garima & Agarwal, Amita & Jain, Rachna & Nagar, (2008). Changing clinical manifestations of dengue infection in north India. Dengue Bulletin.
- Utama IMS, Lukman N, Sukmawati DD, Alisjahbana B, Alam A, et al. (2019) Dengue viral infection in Indonesia: Epidemiology, diagnostic challenges, and mutations from an observational cohort study. PLOS Neglected Tropical Diseases 13(10): e0007785. https://doi.org/10.1371/journal.pntd.0007785.
- 20. Ahmed, Sundus & Finkelstein, Julia & Stewart Ibarra, Anna & Kenneth, John & Polhemus, Mark & Endy, Timothy & Cárdenas, Washington & Mehta, Saurabh. The American journal of tropical medicine and hygiene 91(5):2014.